

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Tech Notes

Delphi and Unicode
Marco Cantù

December 2008

Delphi and Unicode

Embarcadero Technologies - 1 -

INTRODUCTION: DELPHI 2009 AND UNICODE
One of the most relevant new features of Delphi 2009 is its complete support for the Unicode
character set. While Delphi applications written exclusively for the English language and based
on a 26-character alphabet were already working fine and will keep working fine in Delphi 2009,
applications written for most other languages spoken around the world will have a distinct
benefit by this change.

This is true for application written in Western Europe or South America, that used to work fine
only within a specific locale, but it is a large benefit for applications written in other parts of the
world. Even if you are writing an application in English, consider that it now becomes easier to
translate and localize, and that it can now operate on textual data written in any language,
including database memo fields with texts in Arabic, Chinese, Japanese, Cyrillic, to name just a
few of the world languages support by Unicode with a simple, uniform, and easy to use
character set.

With the Windows operating system providing extensive support for Unicode at the API level,
Delphi fills a gap and opens up new markets both for selling your programs and for developing
new specific applications.

As we will see in this white paper that are some new concepts to learn and a few caveats, but
the changes opens up many opportunities. And in case you need to improve compatibility, you
can still keep part of your code to use the traditional string format. But let me not rush though
the various topics, and rather start from the beginning. One final word of caution: the concepts
behind Unicode and some of the new features provided by Delphi 2009 take some time to
learn, but you can certainly start using Delphi 2009 and convert your existing Delphi
applications right away, with no need to know about all of the gory details. Using Unicode in
Delphi 2009 is much easier than it might look!

WHAT IS UNICODE?
Unicode is the name of an international character set, encompassing the symbols of all written
alphabets of the world, of today and of the past, plus a few more. Unicode includes also
technical symbols, punctuations, and many other characters used in writing text, even if not part
of any alphabet. The Unicode standard (formally referenced as “ISO/IEC 10646”) is defined and
documented by the Unicode Consortium, and contains over 100,000 characters. Their main web
site is located at: http://www.unicode.org.

As the adoption of Unicode is a central element of Delphi 2009 and there are many issues to
address.

The idea behind Unicode (which is what makes it simple) is that every single character has its
own unique number (or code point, to use the proper Unicode term). I don't want to delve into
the complete theory of Unicode here, but only highlight its key points.

Delphi and Unicode

Embarcadero Technologies - 2 -

UNICODE TRANSFORMATION FORMATS
The confusion behind Unicode (what makes it complex) is that there are multiple ways to
represent the same code point (or Unicode character numerical value) in terms of actual
storage, or of physical bytes. If the only way to represent all Unicode code points in a simple
and uniform way was to use four bytes for each code point (in Delphi the Unicode Code Points
can be represented using the UCS4Char data type) most developers would perceive this as too
expensive in memory and processing terms.

Few people know that the very common “UTF” term is the acronym of Unicode Transformation
Format. These are algorithmic mappings, part of the Unicode standard, that map each code
point (the absolute numeric representation of a character) to a unique sequence of bytes
representing the given character. Notice that the mappings can be used in both directions,
converting back and forth different representations.

The standard define three of these encodings or formats, depending on how many bits are
used to represent the initial part of the set (the initial 128 characters): 8, 16, or 32. It is interesting
to notice that all three forms of encodings need at most 4 bytes of data for each code point.
• UTF-8 transforms characters into a variable-length encoding of 1 to 4 bytes. UTF-8 is

popular for HTML and similar protocols, because it is quite compact when most characters
(like markers in HTML) fall within the ASCII subset.

• UTF-16 is popular in many operating systems (including Windows) and development
environments (like Java and .NET). It is quite convenient as most characters fit in two bytes,
reasonably compact, and fast to process.

• UTF-32 makes a lot of sense for processing (all code points have the same length), but it is
memory consuming and has limited practical usage.

Another problem relates with multi-byte representations (UTF-16 and UTF-32) is which of the
bytes comes first. According to the standard, all forms are allowed, so you can have a UTF-16
BE (big-endian) or LE (little-endian), and the same for UTF-32.

BYTE ORDER MARK
Files storing Unicode characters often use an initial header, called Byte Order Mark (BOM) as a
signature indicating the Unicode format being used and the byte order form (BE or LE). The
following table provides a summary of the various BOM, which can be 2, 3, or 4 bytes long:

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

UNICODE IN WIN32
Since the early days, the Win32 API (which dates back to Windows NT) has included support for
Unicode characters. Most Windows API functions have two versions available, an ASCII version

Delphi and Unicode

Embarcadero Technologies - 3 -

marked with the letter A and a wide-string version marked with the letter W. As an example, the
following is a small snippet of Windows.pas in Delphi 2009:

function GetWindowText(hWnd: HWND; lpString: PWideChar;
 nMaxCount: Integer): Integer; stdcall;
function GetWindowTextA(hWnd: HWND; lpString: PAnsiChar;
 nMaxCount: Integer): Integer; stdcall;
function GetWindowTextW(hWnd: HWND; lpString: PWideChar;
 nMaxCount: Integer): Integer; stdcall;

function GetWindowText; external user32
 name 'GetWindowTextW';
function GetWindowTextA; external user32
 name 'GetWindowTextA';
function GetWindowTextW; external user32
 name 'GetWindowTextW';

The declarations are identical but use either PAnsiChar or PWideChar to refer to strings.
Notice that the plain version with no string format indication is just a placeholder for one of
them, in past versions of Delphi invariably the 'A' version, while in Delphi 2009 the default
becomes the 'W' version, as you can see above.

CHAR IS NOW WIDECHAR
For some time, Delphi included two separate data types representing characters:

AnsiChar, with an 8-bit representation (accounting for 256 different symbols), interpreted
depending on your code page;

WideChar, with a 16-bit representation (accounting for 64K different symbols).

In this respect, nothing has changed in Delphi 2009. What is different is that the Char type used
to be an alias of AnsiChar and is now an alias of WideChar. Every time the compiler sees Char in
your code, it reads WideChar. Notice that there is no way to change this new compiler default.
(As with the string type, the Char type is mapped to a specific data type in a fixed and hard-
coded way. Developers have asked for a compiler directive to be able to switch, but this would
cause a nightmare in terms of QA, support, package compatibility, and much more. You still
have a choice, as you can convert your code to use a specific type, such as AnsiChar.)

This is quite a change, impacting a lot of source code and with many ramifications. For example,
the PChar pointer is now an alias of PwideChar, rather than PAnsiChar, as it used to be.

CHAR AS AN ORDINAL TYPE
The new large Char type is still an ordinal type, so you can use Inc and Dec on it, write for
loops with a Char counter, and the like.

var

Delphi and Unicode

Embarcadero Technologies - 4 -

 ch: Char;
begin
 ch := 'a';
 Inc (ch, 100);
 ...
 for ch := #32 to High(Char) do
 str := str + ch;

The only thing that might get you into some (limited) trouble is when you are declaring a set
based on the entire Char type:

var
 CharSet = set of Char;
begin
 charSet := ['a', 'b', 'c'];
 if 'a' in charSet then
 ...

In this case the compiler will assume you are porting existing code to Delphi 2009, decide to
consider that Char as an AnsiChar (as a set can only have 256 elements at most) and issue a
warning message:

W1050 WideChar reduced to byte char in set expressions. Consider
using 'CharInSet' function in 'SysUtils' unit.

The code will probably work as expected, but not all existing code will easily map, as it is not
possible to obtain a set of all the characters any more. If this is what you need, you'll have to
change your algorithm (possibly following what's suggested by the warning).

If what you are looking for, instead, is to suppress the warnings (compiling the five lines of code
above causes two of them) you can write:

var
 charSet: set of AnsiChar; // suppress warning
begin
 charSet := ['a', 'b', 'c'];
 if AnsiChar('a') in charSet then // suppress warning
 ...

CONVERTING WITH CHR
Notice also that you can convert a numeric value to a character using a type cast to AnsiChar or
WideChar, but also relying on the classic Pascal technique, the use of the Chr compiler magic
function (which can be considered as the opposite of Ord). This standard magic function has
been expanded to take a word as parameter, rather than a byte.

Delphi and Unicode

Embarcadero Technologies - 5 -

Although, unlike character literals, calls to Chr are now always interpreted in the Unicode
realm. So if you port code like:

Chr (128)

from Delphi 2007 to Delphi 2009 you might be in for a surprise. If you use #128, instead, you
may get a different result, depending on your code page.

32-BIT CHARACTERS
Although the default Char type is now mapped to WideChar, it is worth noticing that Delphi
defines also a 4-byes character type, UCS4Char, defined in the System unit as:

type
 UCS4Char = type LongWord;

While this type definition and the corresponding one for UCS4String (defined as an array of
UCS4Char) were already in Delphi 2007, the relevance of the UCS4Char data type in Delphi
2009 comes from the fact it is now significantly used in several RTL routines, including those of
the new Character unit discussed next.

THE NEW CHARACTER UNIT
To better support the new Unicode characters (and also Unicode strings, of course) Delphi 2009
introduces a brand new RTL unit, called Character. The unit defines the TCharacter sealed
class, which is a basically collection of static class functions, plus a number of global routines
mapped to the public (and some of the private) functions of the class.

The unit also defines two interesting enumerated types. The first is called
TUnicodeCategory and maps the various characters in broad categories like control, space,
uppercase or lowercase letter, decimal number, punctuation, math symbol, and many more.
The second enumeration is called TUnicodeBreak and defines the family of the various
spaces, hyphen, and breaks.

The TCharacter sealed class has over 40 methods that either work on a stand-alone
character or one within a string for:

Getting the numeric representation of the character (GetNumericValue).

Asking for the category (GetUnicodeCategory) or checking it against one of the various
categories (IsLetterOrDigit, IsLetter, IsDigit, IsNumber, IsControl,
IsWhiteSpace, IsPunctuation, IsSymbol, and IsSeparator)

Checking if it is lowercase or uppercase (IsLower and IsUpper) or converting it (ToLower
and ToUpper)

Delphi and Unicode

Embarcadero Technologies - 6 -

Verifying if it is part of a UTF-16 surrogate pair (IsSurrogatePair, IsSurrogate,
IsLowSurrogate, and IsHighSurrogate)

Converting it to and from UTF32 (ConvertFromUtf32 and ConvertToUtf32)

The global functions are almost an exact match of these static class methods, some of which
correspond to existing Delphi RTL functions even if generally with different names. There are
overloads of some of the basic RTL functions working on characters, with extended versions that
call the proper Unicode-enabled code. For example, you can write the following code for trying
to convert an accented letter to uppercase:

var
 ch1: Char;
 ch2: AnsiChar;
begin
 ch1 := 'ù';
 Memo1.Lines.Add ('WideChar');
 Memo1.Lines.Add ('UpCase ù: ' + UpCase(ch1));
 Memo1.Lines.Add ('ToUpper ù: ' + ToUpper (ch1));

 ch2 := 'ù';
 Memo1.Lines.Add ('AnsiChar');
 Memo1.Lines.Add ('UpCase ù: ' + UpCase(ch2));
 Memo1.Lines.Add ('ToUpper ù: ' + ToUpper (ch2));

The traditional Delphi code (the UpCase on the AnsiChar version) handles ASCII characters
only, so it won't convert the character (The same is true for the UpperCase function, which
handles only ASCII, while AnsiUpperCase handles everything in Unicode, despite the
name.). The behavior doesn't change (probably for backward compatibility reasons) if you pass
a WideChar to it. The ToUpper function works properly (its ends up calling the CharUpper
function of the Windows API). This is the output of running the code above:

WideChar
UpCase ù: ù
ToUpper ù: Ù
AnsiChar
UpCase ù: ù
ToUpper ù: Ù

Notice you can keep your existing Delphi code, with the UpCase call on a Char, and it will keep
the standard Delphi behavior.

For a better demo of the specific Unicode-related features introduced by the Characters unit,
you can see the following code, which defines a string including Unicode code point $1D11E,
that is musical symbol G clef:

var
 str1: string;

Delphi and Unicode

Embarcadero Technologies - 7 -

begin
 str1 := '1.' + #9 + ConvertFromUtf32 (128) +
 ConvertFromUtf32($1D11E);

The program then makes the following tests (all returning True) on the various characters of the
string:

 TCharacter.IsNumber(str1, 1)
 TCharacter.IsPunctuation (str1, 2)
 TCharacter.IsWhiteSpace (str1, 3)
 TCharacter.IsControl(str1, 4)
 TCharacter.IsSurrogate(str1, 5)

Finally notice that the IsLeadChar function of SysUtils has been modified to handle Unicode
surrogate pairs, as well as other related functions used to move to the next character of a string
and the like.

OF STRING AND UNICODESTRING
The change in the definition of the Char type is important because it is tied to the change in the
definition of the string type. Unlike characters, though, string is mapped to a brand new data
type that didn't exist before, called UnicodeString. As we'll see, its internal representation is
also quite different from that of the classic AnsiString type (I'm using the specific terms classic
AnsiString type, to refer to the string type as it used to work from Delphi 2 until Delphi 2007; the
AnsiString type is still part of Delphi 2009, but it has a modified behavior, so when referring its
past structure I'll use the term classic AnsiString).

As there was already a WideString type in the language, representing strings based on the
WideChar type, why bother defining a new data type? WideString was (and still is) not reference
counted and is extremely poor in terms of performance and flexibility (for example, it uses the
Windows global memory allocator rather than the native FastMM4).

Like AnsiString, UnicodeString is reference counted, uses copy-on-write semantics and is quite
performant. Unlike AnsiString, UnicodeString uses two-bytes per character and is based on
UTF-16. Actually UTF-16 is a variable length encoding, and at times UnicodeString used two
WideChar surrogate elements (that is, four bytes) to represent a single Unicode code point.

The string type is now mapped to UnicodeString in a hard-coded way as is the Char type and
for the same reasons. There is no compiler directive or other trick to change that. If you have
code that needs to continue to use the string type, just replace it with an explicit declaration of
the AnsiString type.

THE INTERNAL STRUCTURE OF STRINGS
One of the key changes related to the new UnicodeString type is its internal representation.
This new representation, however, is shared by all reference-counted string types,

Delphi and Unicode

Embarcadero Technologies - 8 -

UnicodeString and AnsiString, but not by the non-reference counted string types, ShortString
and WideString.

The representation of the classic AnsiString type was the following:

-8 -4 String reference address

Ref count length First char of string

The first element (counting backwards from the beginning of the string itself) is the Pascal string
length, the second element is the reference count. In Delphi 2009 the representation for
reference-counted strings becomes:
-12 -10 -8 -4 String reference address

Code page Elem size Ref count length First char of string

Beside the length and reference count, the new fields represent the element size and the code
page. While the element size is used to discriminate between AnsiString and UnicodeString, the
code page makes sense in particular for the AnsiString type (as it works in Delphi 2009), as the
UnicodeString type has the fixed code page 1200.

A corresponding support data structure is declared in the implementation section of System
unit as:

type
 PStrRec = ^StrRec;
 StrRec = packed record
 codePage: Word;
 elemSize: Word;
 refCnt: Longint;
 length: Longint;
 end;

As it is in the implementation section you cannot use it in your code, which is understandable
for an internal data structure that's implementation specific and subject to change. There are
helper functions to access the information you'll generally need to use.

With the overhead of a string going from 8 bytes to 12 bytes, one might wonder if a more
compact representation wouldn't be more effective, although the newer fields are more
compact than the traditional ones (that could be changed only at the expense of compatibility).
This is a classic trade-off between memory and speed: by storing data in different memory
locations (and not using portions of a single location) you gain extra runtime speed, although
this is costing extra memory for each and every string you create.

While in the past you had to use low-level pointer-based code to access to the reference count,
the Delphi 2009 RTL adds some handy functions to access the various string metadata:

function StringElementSize(const S: UnicodeString): Word;
function StringCodePage(const S: UnicodeString): Word;
function StringRefCount(const S: UnicodeString): Longint;

Delphi and Unicode

Embarcadero Technologies - 9 -

There is also a new helper functions in the SysUtils unit, called ByteLength, that returns the
size of a UnicodeString in bytes ignoring the StringElementSize attributes (so, oddly
enough, it won't work with string types other than UnicodeString).

As an example, you can create a string and ask for some information about it:

var
 str1: string;
begin
 str1 := 'foo';
 Memo1.Lines.Add ('SizeOf: ' + IntToStr (SizeOf (str1)));
 Memo1.Lines.Add ('Length: ' + IntToStr (Length (str1)));
 Memo1.Lines.Add ('StringElementSize: ' +
 IntToStr (StringElementSize (str1)));
 Memo1.Lines.Add ('StringRefCount: ' +
 IntToStr (StringRefCount (str1)));
 Memo1.Lines.Add ('StringCodePage: ' +
 IntToStr (StringCodePage (str1)));
 if StringCodePage (str1) = DefaultUnicodeCodePage then
 Memo1.Lines.Add ('Is Unicode');
 Memo1.Lines.Add ('Size in bytes: ' +
 IntToStr (Length (str1) * StringElementSize (str1)));
 Memo1.Lines.Add ('ByteLength: ' +
 IntToStr (ByteLength (str1)));

This program produced output similar to the following:

SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: -1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The code page returned by a UnicodeString is 1200, a number stored in the global variable
DefaultUnicodeCodePage. In the code above (and its output) you can clearly notice that
there isn't a direct call to determine the length of a string in bytes, since Length returns the
number of characters.

Of course, you can (in general) multiply this by the size in bytes of each character, using the
expression:

Length (str1) * StringElementSize (str1)

Not only can you ask a string for information, but you can also change some of it. A low-level
way to convert a string is to call the SetCodePage procedure (an operation applicable only to

Delphi and Unicode

Embarcadero Technologies - 10 -

a RawByteString type, as we'll see), which can either only adjust the code page to the real
one or perform a full string conversion. I'll use this procedure in the section “String
Conversions”.

UNICODESTRING AND UNICODE
Needless to say the new string type (or new UnicodeString type, to be more precise) maps to
the Unicode character set. However, the question becomes, “which flavor of Unicode?”

It should not be surprising to learn that the new string type uses UTF-16. More precisely, the
UnicodeString type in stored in memory as a UTF-16 string with a little endian representation, or
UTF-16 LE. This makes a lot of sense for many reasons, the most significant being that this is the
native string type managed by the Windows API in recent versions of the operating system.

As we've seen in the section covering the WideChar type in Delphi 2009, the new
TCharacter support class (not used for WideChar but also for UnicodeString processing) has
full support for UTF-16 and surrogate pairs. What I didn't mention in the section is that this has
the noticeable side effect of making the number of WideChar elements of a string different
from the number of Unicode code points it contains, as a single Unicode code point can be
represented by a surrogate pair (that is, two WideChar).

A way to create a string with surrogate pairs is to use the ConvertFromUtf32 function that
returns a string with the surrogate pair (two WideChar) in the proper circumstances, like the
following:

var
 str1: string;
begin
 str1 := 'Surr. ' + ConvertFromUtf32($1D11E);

Now if you ask for the string length, you'll get 8, which is the number of WideChar, but not the
number of logical Unicode code points in the string. If you print the string you get the proper
effect (well, at least Windows will generally show one square block as placeholder of the
surrogate pair, rather than two).

By the way, in the code of ConvertFromUtf32 (or more precisely in the ConvertFromUtf32 class
method of the TCharacter class it calls) you can see the actual algorithm used for mapping
Unicode code points into surrogate pairs. Interesting reading if you are interested in the details.

A related issue is what happens when looping on each character of the string. A standard for
loop or a for-in cycle will just let you work on each WideChar element of the string, not each
logical Unicode code point. So you might have to use a while loop based on the
NextCharIndex function or adapt the for loop checking for surrogates:

if TCharacter.IsHighSurrogate (str1 [I]) then
 Memo1.Lines.Add (str1 [I] + str1 [I+1])

Delphi and Unicode

Embarcadero Technologies - 11 -

However, in most cases you can assume to work with the BMP (Basic Multilingual Plane) that
treats each WideChar of a Unicode string as a single code point.

THE UCS4STRINGTYPE
There is also another string type that you can use to handle a series of Unicode code points, the
UCS4String type. This data type represents a dynamic array of 4-bytes characters (the UCS4Char
type). As such, it has no reference counting or copy-on-write support, and very little RTL
support.

Although this data type (that was already available in Delphi 2007) can be used in specific
situations, it is not particularly suited for general circumstances. It certainly can be a memory
waster, as not only strings use 4 bytes per character, but you can end up with multiple copies in
memory.

THE MANY STRING TYPES
Along with the introduction of the new UnicodeString type, the updated internal representation
shared by all string types (including the AnsiString type) makes room for some extra
improvements in string management. The Delphi R&D team took advantage of this new internal
representation (and all the work they did at the compiler level to enhance string management)
to actually provide you with multiple data types and even a brand new string type definition
mechanism.

The predefined string types, in addition to UnicodeString, are:

AnsiString is a single-byte-per-character string type based on the current code page of the
operating system, closely matching the classic AnsiString of past versions of Delphi;

UTF8String is a string based on the variable character length UTF8 format;

RawByteString is an array of characters with no code page set, on which no character
conversion is accomplished by the system (thus partially resembling the classic AnsiString, when
used as a pure character array).

The type definition mechanism is revealed as you look at the definition of these new string
types:

type
 UTF8String = type AnsiString(65001);
 RawByteString = type AnsiString($FFFF);

In this next section I'll cover the AnsiString and custom string types and then the UTF8String
type. I'll focus on RawByteString in the following section covering string conversions, as you
generally use this string type to avoid conversions.

Delphi and Unicode

Embarcadero Technologies - 12 -

THE NEW ANSISTRING TYPE
Differently from the past, the new AnsiType string carries one further piece of information, the
code page of the characters in the string. The DefaultSystemCodePage variable defaults
to CP_ACP, the current Windows code page, but it could be modified by calling the special
procedure, SetMultiByteConversionCodePage. You can do this to force an entire
program to work (by default) with characters in a given code page (that the operating system
installation must support, of course).

In general, instead, you'd either stick to the current code page or change it for individual
strings, calling the SetCodePage procedure (introduced earlier while talking about characters
and code pages). This procedure can be called in two different ways. In the first case, you
change the code page of a string (maybe loaded by a separate file or socket) because you know
its format. In the second case, you can call it to convert a given string (something that happens
automatically when assigning a string to one of a different code page, as discussed later).

Although you can keep using the AnsiString type to have a more compact in-memory
representation of strings, in most cases you'd really want to convert your code to using the new
UnicodeString type, that is, keep your strings declared with the generic string type. Still, there
are circumstances in which using a specific string type is necessary. For example, cases such as
loading or saving files, moving data from and to a database, using Internet protocols where the
code must remain in an 8-bit per character format. In all those cases convert your code to use
AnsiString.

CREATING A CUSTOM STRING TYPE
Besides using the new AnsiString type, which is tied to the default code page used when
compiling the application, you can use the same mechanism to define your own custom string
type. For example, you can define a Latin-1 string type by writing:

type
 Latin1String = type AnsiString(28591);

procedure TFormLatinTest.btnNewTypeClick(
 Sender: TObject);
var
 str1: Latin1String;
begin
 str1 := 'a string with an accent: Cantù';
 Log ('String: ' + str1);

You can use this string type as any other one, but it will be tied to a specific code page. So if
you use this string type, when you convert a Latin1String to a UnicodeString (for example,
to display it in a call to Log above), the Delphi compiler will add a conversion call. The last line
of the code snippet above has a hidden call to _UStrFromLStr, which end up calling more
internal functions of the system unit, up to the real conversion operation performed by the
MultiByteToWideChar Windows API. This is the sequence of calls:

Delphi and Unicode

Embarcadero Technologies - 13 -

procedure _UStrFromLStr(var Dest: UnicodeString;
 const Source: AnsiString);
procedure InternalUStrFromPCharLen(
 var Dest: UnicodeString; Source: PAnsiChar;
 Length: Integer; CodePage: Integer);
function WCharFromChar(WCharDest: PWideChar;
 DestChars: Integer; const CharSource: PAnsiChar;
 SrcBytes: Integer; CodePage: Integer): Integer;
function MultiByteToWideChar(CodePage, Flags: Integer;
 MBStr: PAnsiChar; MBCount: Integer;
 WCStr: PWideChar; WCCount: Integer): Integer; stdcall;
 external kernel name 'MultiByteToWideChar';

The Windows API can perform the proper conversions, but these are potentially lossy
conversions, as even some characters available in the various Windows code pages cannot be
represented in Latin1. An example would be the Euro currency symbol, another the smart
quotes.

The btnNewTypeClick method above continues showing some more details of the string:

 Log ('Last char: ' + IntToStr (
 Ord (str1[Length(str1)])));
 Log ('ElemSize: ' + IntToStr (StringElementSize (str1)));
 Log ('Length: ' + IntToStr (Length (str1)));
 Log ('CodePage: ' + IntToStr (StringCodePage (str1)));

Running this code produces the following output:

Last char: 249
ElemSize: 1
Length: 30
CodePage: 28591

To prove that this new custom string type is treated differently than the standard AnsiString
type (at least on my computer and with my locale), I've written a test method that adds the
same upper end characters (from #128 to #255) to both an AnsiString and a
Latin1String, showing them on a Memo in groups:

procedure TFormLatinTest.btnCompareCharSetClick(
 Sender: TObject);
var
 str1: Latin1String;
 str2: AnsiString;
 I: Integer;
begin
 for I := 128 to 255 do
 begin

Delphi and Unicode

Embarcadero Technologies - 14 -

 str1 := str1 + AnsiChar (I);
 str2 := str2 + AnsiChar (I);
 end;

 for I := 0 to 15 do
 begin
 Log (IntToStr (128 + I*8) + ' - ' +
 IntToStr (128 + I*8 + 7));
 Log ('Lati: ' + Copy (str1, 1 + i*8, 8));
 Log ('Ansi: ' + Copy (str2, 1 + i*8, 8));
 end;
end;

The initial part of the output highlights the differences among the two sets (again, the result
you'll see might vary depending on your own locale):

128 - 135
Lati: ?�,f".??
Ansi: €�‚ƒ„…†‡
136 - 143
Lati: ^?S<O�Z�
Ansi: ˆ‰Š‹Œ�Ž�
144 - 151
Lati: �''"".--
Ansi: �‘’“”•–—
152 - 159
Lati: ~Ts>o�zY
Ansi: ˜™š›œ�žŸ

Having said this, at least at my latitude, a far more interesting example would be to use the
code page of a non Latin alphabet, like Cyrillic. As an example, I defined a second custom
string type:

type
 CyrillicString = type Ansistring(1251);

You can use this string in a very similar fashion of the previous code snippet, but the interesting
part is to use the high-order characters, those with a numeric value over 127. I've picked a few
with a for loop:

procedure TFormLatinTest.btnCyrillicClick(
 Sender: TObject);
var
 str1: CyrillicString;
 I: Integer;
begin
 str1 := 'a string with an accent: Cantù';
 Log ('String: ' + str1);
 Log ('Last char: ' + IntToStr (

Delphi and Unicode

Embarcadero Technologies - 15 -

 Ord (str1[Length(str1)])));
 Log('ElemSize: ' + IntToStr (StringElementSize (str1)));
 Log('Length: ' + IntToStr (Length (str1)));
 Log ('CodePage: ' + IntToStr (StringCodePage (str1)));

 str1 := '';
 for I := 150 to 250 do
 str1 := str1 + CyrillicString(AnsiChar (I));
 Log ('High end chars: ' + str1);
end;

The output of this method looks like this:

String: a string with an accent: Cantu
Last char: 117
ElemSize: 1
Length: 30
CodePage: 1251
High end chars: –—�™љ›њќћџ ЎўЈ¤Ґ¦§Ё©Є«¬-
®Ї°±Ііґµ¶·ё№є»јЅѕїАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмно
прстуфхцчшщъ

You can notice that the accented letter has been converted to the corresponding non-accented
version, as the original value was not available. (The WideCharToMultiByte behind the
conversion tries to fail gracefully in certain situations. For example, smart quotes degrade into
straight quotes instead of question marks and the accented letter of the sample code lost its
accent.) The string constant is a Unicode string and the assignment to str1 performs an
implicit conversion. In fact, the numeric value of the last character is different.

Also this time the high-end characters are completely different. To obtain the desired effect,
consider you have to write the double cast:

CyrillicString(AnsiChar (I))

If you simply concatenate the characters in the string and convert it afterwards, they'll be
treated as Unicode characters.

MANAGING UTF-8 STRINGS
One of the side effects of the new internal structure for string types, is that we can now also
manage strings in the UTF-8 format in a more native way. Unlike the past, when UTF8String was
simply an alias of the string type, the new type is now fully recognized: conversions are
automatic and all of the existing UTF-8 string manipulation routines have been ported to use
the new specific types.

Delphi and Unicode

Embarcadero Technologies - 16 -

Consider this trivial code:

var
 str8: Utf8String;
 str16: string;
begin
 str8 := 'Cantù';
 Memo1.Lines.Add ('UTF-8');
 Memo1.Lines.Add('Length: ' + IntToStr (Length (str8)));
 Memo1.Lines.Add('5: ' + IntToStr (Ord (str8[5])));
 Memo1.Lines.Add('6: ' + IntToStr (Ord (str8[6])));

 str16 := str8;
 Memo1.Lines.Add ('UTF-16');
 Memo1.Lines.Add('Length: ' + IntToStr (Length (str16)));
 Memo1.Lines.Add('5: ' + IntToStr (Ord (str16[5])));

As you might expect, the str8 string has a length of 6 (meaning 6 bytes), while the str16
string has a length of 5 (meaning 10 bytes, though). Notice that Length invariably returns the
number of string elements, which in case of variable-length representations don't match the
number of Unicode code points represented by the string. This is the output of the program:

UTF-8
Length: 6
5: 195
6: 185

UTF-16
Length: 5
5: 249

The reason is that UTF-8 strings use a variable length implementation, so that characters
outside the initial 7-bit ANSI space take at least two characters. This is also the case of the
accented u above. Assigning the same UTF-8 string to an AnsiString variable, and running
similar code, gives the following:

ANSI
Length: 5
5: 249

However this time the string length of 5 really means 5 bytes and not only 5 characters.

The support for the UTF-8 format might not as complete as that for UTF-16 , the native string
implementation for Delphi 2009, but has been enhanced in a very significant way. There are
specific routines for UTF-8 manipulation in the WideStrUtils unit, but also full support for
streaming text files in this format (I'll cover the TEncoding class and text file conversions later, in

Delphi and Unicode

Embarcadero Technologies - 17 -

the section “Streams and Encodings”). What's core, though, is the fact you can work on such a
string and show it in any control without having to perform an explicit conversion (and having to
remember if and when to perform one); that certainly helps a lot.

Even if some operations on UTF-8 strings might be slow, because of extra conversions to and
from the UnicodeString type, having a specific data type rather than an alias type not enforced
by the compiler makes a lot of difference to any Delphi developer who has to deal with this
encoding.

You are also free to write overloaded versions of existing routines (or new ones) using this
specific string type to avoid any extra conversion.

CONVERTING STRINGS
We've seen you can assign UnicodeString value to an AnsiString or an UTF8String and the
proper conversions will take place. Similarly, when you assign an AnsiString with a given code
page to another one based on a different code page a conversion happens. You can also
convert a string by assigning to it a different code page, asking for a conversion to take place:

type
 Latin1String = type AnsiString(28591);

procedure TFormStringConvert.btnLatin1Click(
 Sender: TObject);
var
 str1: AnsiString;
 str2: Latin1String;
 rbs: RawByteString;
begin
 str1 := 'any string with a €';
 str2 := str1;

 Memo1.Lines.Add (str1);
 Memo1.Lines.Add (IntToStr (Ord (str1[19])));

 Memo1.Lines.Add (str2);
 Memo1.Lines.Add (IntToStr (Ord (str2[19])));
 rbs := str1;
 SetCodePage(rbs, 28591, True);
 Memo1.Lines.Add (rbs);
 Memo1.Lines.Add (IntToStr (Ord (rbs[19])));
end;

In both cases above, the conversion is a lossy conversion, because the Euro symbol cannot be
represented in the Latin1 code page. Notice the use of the SetCodePage routine, that can be
applied only to a RawByteString parameter, hence the assignment. The output you'll get is:

any string with a €
128

Delphi and Unicode

Embarcadero Technologies - 18 -

any string with a ?
63
any string with a ?
63

CONVERSIONS MAY SLOW DOWN THE CODE
The automatic conversions happening behind the scenes are extremely handy, as the system
does a lot of work for you, but if you don't carefully consider what you are doing you might end
up with some slow code, because of continuous conversions and string copy operations.
Consider the following code:

 str1 := 'Marco ';
 str2 := 'Cantù ';
 for I := 1 to 10000 do
 str1 := str1 + str2;

Depending on the actual string type of the two strings, the algorithm can be extremely fast or
excruciatingly slow. The demo uses string (that is UnicodeString) in a first run and a combination
of AnsiString and UTF8String (the worse possible case, as they'll have to be converted back and
forth to the UnicodeString type for each assignment) in a second. This is the result of 10,000
iterations:

plain: 00.001
mixed: 01.717

Yes, you are reading the right numbers, that's about 1,000 times or three orders of magnitude!
If this wasn't bad enough, consider what happens with 50,000 concatenations:

plain: 00:00.003
mixed: 00:42.879

That's another order of magnitude! (The increase is exponential due to the fact than larger and
larger strings need to be re-allocated in memory many times. What slows down the code is only
partially the conversion, but mostly the need to create new large temporary strings rather than
keep increasing the size of the current one.) In other words, an occasional implicit conversion is
fine, but never ever let them happen within a loop or recursive routine!

What is important to know, is that you can compile your program with string conversion
warnings enabled (which is actually the default), and see where the compiler adds conversion
code. On that single line of code used for concatenating strings of different types you'll get the
following warnings:

W1057 Implicit string cast from 'UTF8String' to 'string'

Delphi and Unicode

Embarcadero Technologies - 19 -

W1057 Implicit string cast from 'AnsiString' to 'string'
W1058 Implicit string cast with potential data loss from 'string'
to 'UTF8String'

The “potential data loss” problem arises because not all strings can be expressed in all formats.
For example, if you assign a UnicodeString to an AnsiString there are chances that the
operation won't be possible. As string conversion operations are quite common, the
corresponding two warnings (Implicit string cast and Implicit string cast with potential data loss)
are turned off by default.

With these warnings on you'll see many potential pitfalls, but an average program can have
many and even an explicit typecast won't remove them but simply change them to a different
set of warnings (Explicit string cast and Explicit string cast with potential data loss). Turn these
warnings off when you are done checking!

A fifth similar warning is issued when assigning a string constant to a string, in case some of the
characters cannot be converted. The warning in this case is slightly different:

[DCC Warning] StringConvertForm.pas(63): W2455 Narrowing given
wide string constant lost information

This is a warning you should get rid of, as the operation won't make a lot of sense.

As another example of an implicit (and somewhat hidden) conversion slowing down the
program execution, consider the following code snippet:

 str1 := 'Marco Cantù';
 for I := 1 to MaxLoop2 do
 str1 := AnsiUpperCase (str1);

In case the str1 variable is a UnicodeString all is fine, but in case it is an AnsiString, it will
cause two conversions. This is not as bad as in the previous case (because there string is short
and a copy of the string is required anyway) but shows a little overhead (for one million
iterations):

AnsiUpperCase (string): 00:00.289
AnsiUpperCase (AnsiString): 00:00.540

USING RAWBYTESTRING
What if you need pass an AnsiString as parameter to a routine? When the parameter is assigned
to a specific string type with an encoding, it will be converted to the proper type, with a

Delphi and Unicode

Embarcadero Technologies - 20 -

potential data loss. That's why Delphi 2009 introduces yet another custom string type, called
RawByteString and defined as:

type
 RawByteString = type AnsiString($ffff);

This is definition creates a string type with no encoding or, to be more precise, with the
placeholder $ffff indicating “no encoding”. A RawByteString can be considered as a string
of bytes, which ignores the attached encoding in case of an automatic conversion when
assigning to an AnsiString. In other words, when passing a 1-byte per character string as a
RawByteString parameter, no conversion is performed, unlike any other AnsiString derived type.
You can do a specific conversion by calling the SetCodePage routine, as demonstrated
earlier in the section “Converting Strings”.

As such, it can become a handy replacement of the string (or AnsiString) type in code that uses
strings for generic and custom data processing which you want to keep with a 1-byte per
character representation. (Don't be confused by this extended support for 1-byte per character
Ansi-compatible strings: the preferred solution is by far to migrate your string processing code
to the UnicodeString type. Don't be too tempted by these new extra string types.)

Declaring variables of type RawByteString for storing an actual string should rarely be done.
Given the undefined code page, this can lead to undefined behavior and potential data loss.
On the other hand if your goal is saving binary data using a string-like memory allocation and
representation, you can use the RawByteString in the same way you used AnsiString in past
versions of Delphi. Replacing non-string code that used AnsiString with RawByteString is an
interesting migration path.

For now, let's focus on a typical example in which you can use the RawByteString type as
parameter. If you want to display some information about an 8-bit string, you could write either
of the following two declarations (these are methods of the main form of the RawTest demo):

 procedure DisplayStringData (str: AnsiString);
 procedure DisplayRawData (str: RawByteString);

The code of the two methods is identical (here I've listed only one of the two):

procedure TFormRawTest.DisplayRawData(
 str: RawByteString);
begin
 Log ('DisplayRawData(str: RawByteString)');
 Log ('String: ' + UnicodeString(str));
 Log ('CodePage: ' + IntToStr (StringCodePage (str)));
 Log ('Address: ' + IntToStr (Integer (Pointer (str))));
end;

Delphi and Unicode

Embarcadero Technologies - 21 -

Notice that cast to UnicodeString used to display the proper string, which is necessary to avoid
the data being treated like a plain AnsiString because of the concatenation of a string literal
with a string whose code page is not defined at compile time. (Using Log (str) directly
would work, as there is no concatenation involved.)

STREAMS AND ENCODINGS
If moving all your strings to Unicode within your application, when working with the RTL and
VCL, and while invoking the Windows API isn't that hard, things can become a little more
complicated as you read and write your strings to and from files. What happens with the
TStrings file operations, for example?

Delphi 2009 introduces another brand new class to handle file encodings, called TEncoding
and somewhat mimicking the System.Text.Encoding class of the .NET framework. The
TEncoding class, defined in the SysUtils unit, has several subclasses representing the
encodings automatically supported by Delphi (these are standard encodings to which you can
add your own):

type
 TEncoding = class
 TMBCSEncoding = class(TEncoding)
 TUTF7Encoding = class(TMBCSEncoding)
 TUTF8Encoding = class(TUTF7Encoding)
 TUnicodeEncoding = class(TEncoding)
 TBigEndianUnicodeEncoding = class(TUnicodeEncoding)

One object of each of these classes is available within the TEncoding class, as class data, and
has a corresponding getter function and class property:

type
 TEncoding = class
 ...
 public
 class property ASCII: TEncoding read GetASCII;
 class property BigEndianUnicode: TEncoding
 read GetBigEndianUnicode;
 class property Default: TEncoding read GetDefault;
 class property Unicode: TEncoding read GetUnicode;
 class property UTF7: TEncoding read GetUTF7;
 class property UTF8: TEncoding read GetUTF8;

The TEncoding class has methods for reading and writing characters to byte streams, to
perform conversions, plus a special function to handle the BOM called GetPreamble. So you
can write (anywhere in the code):

TEncoding.UTF8.GetPreamble

Delphi and Unicode

Embarcadero Technologies - 22 -

STREAMING TSTRINGS
The ReadFromFile and WriteToFile methods of the TStrings class can be called with
an encoding. If you write a string list to text file without providing a specific encoding, the class
will use TEncoding.Default, which uses the internal DefaultEncoding in turn
extracted at the first occurrence by the current Windows code page. In other words, if you save
a file you'll get the same ANSI file as before.

Of course, you can also easily force the file to a different format, for example the UTF-16 format:

 Memo1.Lines.SaveToFile('test.txt',
 TEncoding.Unicode);

This saves the file with a Unicode BOM or preamble. As you do the corresponding
LoadFromFile operation, if you don't specify an encoding, the loading method will end up
calling the GetBufferEncoding method of the TEncoding class that will determine the
encoding depending on the presence of a BOM (of its absence, in which case it will use the
default ANSI encoding).

What if you specify an encoding in LoadFromFile? The encoding you provide will be used
for reading the file, regardless of the actual BOM in the file, often producing an error. I'd rather
expect an exception in case of such a discrepancy, saving a file with one code page and forcing
to upload it with a different one is certainly a developer error. Not having an exception can help
in case the encoded file was saved without a BOM, and still should not be considered as an
ASCII file, but a UTF one.

But let us focus on the file saving operation. If you don't change the existing Delphi code, your
programs will save files as ANSI. If your existing programs don't handle Unicode data, your
program and its files will be fully backwards compatible. But what if a program does handle
Unicode data? Let's suppose we have a string list with lines written in different languages, like in
the following design-time form:

Delphi and Unicode

Embarcadero Technologies - 23 -

If we have existing Delphi code that saves the string list to a file and reloads it, it would
probably look like:

procedure TFormStreamEncoding.btnPlainClick(
 Sender: TObject);
var
 strFileName: string;
begin
 strFileName := 'PlainText.txt';
 ListBox1.Items.SaveToFile(strFileName);
 ListBox1.Clear;
 ListBox1.Items.LoadFromFile(strFileName);
end;

Needless to say that the effect would be a total disaster, as only a fraction of the characters
used have an ANSI representation, so you'll end with lots of question marks in the list box. A
simple alternative would be to change the code as in the event handle of the second button of
the project:

 strFileName := 'Utf8Text.txt';
 ListBox1.Items.SaveToFile(strFileName, TEncoding.UTF8);

Figure 1 Design Form That Displays Strings in Different Languages

Delphi and Unicode

Embarcadero Technologies - 24 -

Again, we don't have to specify an encoding when loading the string list, as Delphi will pick it
up from the BOM. If you prefer to save the data as ANSI unless necessary, you could check for
the string list content to determine whether to save as ASCII or UTF-8:

procedure TFormStreamEncoding.btnAsNeededClick(
 Sender: TObject);
var
 strFileName: string;
 encoding1: TEncoding;
begin
 strFileName := 'AsNeededText.txt';
 encoding1 := TEncoding.Default;

 if ListBox1.Items.Text <>
 UnicodeString (AnsiString(ListBox1.Items.Text)) then
 encoding1 := TEncoding.UTF8;

 ListBox1.Items.SaveToFile(strFileName, Encoding1);

This code checks whether you can convert a string to an AnsiString and back to a UnicodeString
without losing any content. For a very long string, this double conversion plus comparison
would be quite expensive, so you could rather use the following alternative code (which is not
as precise, as it relies on a specific code page, but comes close):

var
 ch: Char;
begin
 ...
 for ch in ListBox1.Items.Text do
 if Ord (ch) >= 256 then
 begin
 encoding1 := TEncoding.UTF8;
 break;
 end;

Using similar code you could decide which format to use, depending on the situation. It might
be a better idea, though, to move all of your files to Unicode encoding (UTF-8 or UTF-16),
regardless of the actual data. Using UTF-16 will make the files bigger, but will also reduce the
conversions when saving and loading.

However, since there is no way to specify a default conversion, going for Unicode encoding of
your files would mean the need to change each and every file save operation... unless we use a
trick, changing the standard behavior of the class. Such a hack could come in the form of a class
helper. Consider the following code:

type

Delphi and Unicode

Embarcadero Technologies - 25 -

 TStringsHelper = class helper for TStrings
 procedure SaveToFile (const strFileName: string);
 end;

procedure TStringsHelper.SaveToFile(
 const strFileName: string);
begin
 inherited SaveToFile (strFileName, TEncoding.UTF8);
end;

Notice that inherited here doesn't mean to call a base class but the class helped by the class
helper. Now you simply write (or keep your code as):

 ListBox1.Items.SaveToFile(strFileName);

to save it as UTF8 (or any other encoding of your choice).

CONCLUSION: UNICODE AND THE VCL
Having Unicode string support in the Delphi language is thrilling, and having the Win32 APIs
remapped to the Wide version opens up a lot of easy migration, but the fundamental change is
that the entire RTL and the Visual Component Library (VCL) are now fully Unicode-enabled. All
of the string (and string lists) managed by components are declared as string, so they now
match the new UnicodeString type.

Some of the low-level, internal areas of the RTL, though, rely on different formats. For example
property names are based on UTF-8, and so is part of the RTTI support available in the TypInfo
unit. Beside some very specific exceptions, though, everything else has been migrated to
UnicodeString and UTF-16.

The Unicode support is a key element, but not the only feature that helps improving the
support for building international applications.

Regarding source code files keep in mind you can save them in any format you like, but it is
necessary to use a Unicode format in case you are using any code point above 255 in your
source code (for identifier names, strings, comments, or just about anything else). The editor will
prompt you to use such a format when required, but you can go for Unicode source files
anyway.

Delphi and Unicode

Embarcadero Technologies - 26 -

ABOUT THE AUTHOR
This paper has been written for Embarcadero Technologies by Marco Cantù, author of the best-
selling series Mastering Delphi. The content has been extracted from his latest book “Delphi
2009 Handbook”, http://www.marcocantu.com/dh2009. You can read about Marco on his blog
(http://blog.marcocantu.com) and reach him at his email address marco.cantu@gmail.com.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change
Manager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

