

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

Level 9, 390 St Kilda Road
Melbourne VIC 3004
Australia

Ringing the Changes for Change
Management
Philip Rathle and Scott Walz

Originally published in ISUG Technical Journal, November/December 2007
www.isug.com

28 I S U G T E C H N I C A L J O U R N A L

As mature and pervasive as Sybase
ASE has become, nowhere does
there appear to have emerged a uni-

versally-accepted system or standard that
addresses the problem of database change
management in an holistic fashion. DBA’s
sit at the center of a complex dance that
touches many participants: data modelers,
database developers, architects, business
analysts, software developers and more.

At any given time, each database is
physically instantiated across a number of
different environments, each of which may
contain any one of several versions of the
same database. Furthermore, the design
of a particular database is typically stored
across a variety of locations and a multi-
plicity of tools, which may include a data
modeling tool, a SQL development tool,
a database administration tool, a database
change management tool and so on.

Shepherding the stream
Accurately shepherding the stream of
functional and technology change across
all of these physical environments and
design layer components can be a tremen-
dous challenge. Oftentimes, the database
change process has been (rightly or
wrongly) patterned after the software
change management process. This invari-
ably leaves gaps, which DBA’s usually fill
with manual and ad hoc workarounds.
The job gets done, however the process
for achieving it is generally not optimal
for the specifics of database applications.
Moreover, it often comes at a cost of a
gradually diverging design layer, as this
layer lies for the most part outside of the
DBA’s purview.

DBA’s sit at the center of a

complex dance that touches

many participants: data modelers,

database developers, architects,

business analysts, software

developers and more.

The good news is that there is some new
hope for this old issue. The emergence of
a powerful new breed of database change
management tools has breathed some new
life into this space and will begin yielding
some relief. While tools can never of
themselves be silver bullets for complicat-
ed process problems, their adoption is
an important element not just in the
solution, but in instigating change.

Today’s enterprises are so large and
complex that one cannot hope to climb
out of today’s convoluted database change
management ruts without new and power-
ful functionality aimed specifically at this
problem. Database change management
tools, and the techniques they enable, play
an important role not merely in coordinat-
ing the overall change management
process, but in unwinding and assessing
the current state of affairs so that it can
make the leap forward.

Some of the key difficulties in manag-
ing database change are:

Ringing the changes for
change management
By Philip Rathle and Scott Walz

Philip Rathle brings over ten years of
experience with mission critical systems
in the areas of customer data manage-
ment, data warehousing, marketing and
campaign management and online oper-
ational data management to his role as
Principal Consultant at Embarcadero.

Scott Walz is a Senior Product Manager
at Embarcadero Technologies, he over-
sees the direction of the company's data-
base development products as well as
database research and development for
the engineering departments. He can be
reached at scott.walz@embarcadero.com

As modern database change

management techniques for

the Sybase DBA become more

sophisticated, there is an inherent

need for practitioners to be aware

of the increasingly powerful tools

available to them. Philip Rathle

and Scott Walz of Embarcadero

rifle through their DBA toolkit and

sharpen up a few blades for us.

N O V E M B E R - D E C E M B E R 2 0 0 7 29

◆ the need to preserve data when making a structural change
◆ the need to maintain separate storage settings for objects

across environments–even when the structures are
themselves identical

◆ security differences between environments, reflected in
users, roles and object permissions

◆ shared responsibility for certain types of objects, for
example stored procedures, which are code artifacts and
at the same time database artifacts and may be “owned”
either by the DBA or the database developer, depending
on the organization and on the target environment

◆ the need to keep physical and logical models in sync with
the database (which can itself have cascading impacts)

◆ the need to manage and (increasingly) report on differ-
ences between database settings over time within a
database

◆ the need to manage and maintain different sets of
database settings across different database environments

◆ the need to validate the synchronicity of data in a
replicated environment by comparing data between
primary and replicated tables

◆ the need to manage reference data as one of the compo-
nents necessary for a database build, complicated by the
fact that reference data can be represented as table data or
as check constraints, and is often shared across loosely-
related databases

◆ the need to support multiple versions of a database
concurrently, to support parallel branches of development

◆ the need to accommodate multiple paths by which change
may be effected. For example, emergency changes in the
middle of the night that will nearly always be made by
executing a DDL directly against the database and not
through a change management framework (let alone a
data modeling tool!) Yet these changes ultimately need
to be reflected in all of these places.

Documentation duties
If it weren’t enough to get the right structure of data into
the right place with as little downtime as possible, what is
becoming equally crucial for DBA’s is documenting what
happened, when, and by whom.

These challenges are well understood by database
professionals, who deal with them on a day-to-day basis.
However they tend not to be fully appreciated by those who
are not so closely associated with the technology. Solutions
to these problems tend to diverge widely from organization
to organization and to rely heavily on manual processes.

This is a testament to the real lack of visibility which this
important issue suffers.

Part of the problem is that very few organizations look at
“Database Change Management” as a single unified process.
It is assumed that database change management is a natural
outcome, at the juncture of database management, software
configuration management, and data modeling. The first step
in developing a robust database change management solution
is to recognize it as a standalone process or discipline, with its
own peculiarities that make it quite different from software
change management.

One must then ask the question, “What is database
change management?” We believe that the question should
consider not just structures, but also settings and data. These
are the three primary factors that come together to make a
clean database build and which determine not merely the
structural and data accuracy, but also the performance and
security characteristics of a database.

Figure 1

Database design layer
It is important that the business case for modernizing one’s
strategy for Database Change Management, as well as the
strategy itself, include the database design layer in addition
to the physical implementation. For the design layer (in the
form of a data model, or stored procedure constructs) is not
merely a precursor to a physical database implementation,
but it is also used for software design, impact analysis, and
publishing of metadata to a variety of applications (include
ETL, SOA, OLAP, etc.) Therefore it is crucial that the scope
of the overall database change management include the
database design and not just the database. The business case
to improve the status quo rests on several propositions.

The first is efficiency: to diminish the high level of
manual effort associated with managing database change.

The next is accuracy: being able to state with confidence
what objects, settings and data are in what environment at
any given time and how a change to one impacts the others.

R I N G I N G T H E C H A N G E S F O R C H A N G E M A N A G E M E N T
D

A
T

A
 M

A
N

A
G

E
M

E
N

T

30 I S U G T E C H N I C A L J O U R N A L

The first core requirement of a database change

management solution is the ability to capture the

objects and associated properties of a database

into “collections”, each with its corresponding

intersection in space and time.

Finally there is audit trail: being able to say what a database
looked like yesterday, the day before, or a month ago. All
three will result in direct and indirect cost savings through
improved efficiency and accuracy. The last two however can
also be justified by regulatory compliance.

Now that we have defined the problem space, we can
begin to look at some of the characteristics of the solution.
The easiest starting point (easy because it tends not to differ
so much across organizations… it is the processes themselves
which are very organization dependent) is to discuss what
possibilities exist out of the box for supporting your database
change management program. This should equip you with the
tools you need to begin revisiting and improving your processes.

The first core requirement of a database change manage-
ment solution is the ability to capture the objects and associat-
ed properties of a database into “collections”, each with its
corresponding intersection in space and time. Again, this
should include not merely schema objects, but also server and
database specific configuration settings. In the screen capture
below can be seen a sample collection, which for the sake of
example includes just tables and indexes on a Sybase 15 server:

Figure 2

Being able to compare between a collection and a live
database is an important requirement, which builds upon the
“collection” concept, as is the ability to compare between
collections (and also between live databases). In a Sybase
replication environment, the ability to compare the multiple
databases is the cornerstone to ensuring database integrity.
Comparison operations should be flexible however, in order
to pinpoint problems, and ensure efficiency. It should be
possible to narrow the scope of a particular comparison
operation horizontally – by selecting what objects are
included in the comparison – and vertically – by selecting
what object characteristics are being subject to comparison.

Foundational steps
Identifying differences and generating reports is another foun-
dational step. This can to a certain degree be accomplished
with software change management tools, where archived
DDL files are “diffed” against one another. The database
change management tool takes this two steps further however:
first it can reverse engineer what is currently inside of live
database, versus merely comparing between archived DDL
files. However it also offers the ability to generate an alter
script to implement the change, saving a great deal of manual
effort when implementing change.

Modern database change management tools should be
able to generate reliable, syntactically-accurate and properly-
ordered SQL to bring the desired components in line with
the comparison target. It should also be able to preserve any
existing data and structures, regardless of whether a table
must be dropped and recreated and preserve dependent
objects, referential integrity, grants, etc., and recompile
any dependent objects.

Figure 3

R I N G I N G T H E C H A N G E S F O R C H A N G E M A N A G E M E N T

N O V E M B E R - D E C E M B E R 2 0 0 7 31

Figure 3 is an example where a column, EMAIL_
ADDRESS, has been added to the same Sybase 15 table as
above, with the archive DDL to the left, the modified table
to the right and an alter script below.

Database settings should be dealt with in a similar fashion,
however with settings, it can be useful to have a specialized
type of archive (called a “standard”) that serves as a baseline
or template against which various classifications of systems
should be measured.

Below is an example of a comparison between a standard
settings template for a development database, and the actual
settings for one of the development databases, with differ-
ences highlighted:

Figure 4

If the management of structural change within a database is
likened to maintaining a building’s physical structure, the
management of data change is that which ensure that all of
the fixtures are in the right place so as to meet the needs of
the occupants. Data change management is the process by
which one may compare and verify data: within the same
database, between databases, or even across different
database versions or platforms.

Incomparable data compares
In organizations where reference data is used across databases,
data compares can prove invaluable. Though the structure of
the tax_rate table, for example, may be identical, a difference
in data could lead to serious problems. In replication shops,
the ability to compare sub-sets of the entire dataset provides
a means to validate the replication jobs. As with structural
comparisons, the ability to limit the scope of an operation
to particular set of tables, as well as a particular set of
columns within the tables, is important to productivity
and performance.

Below is an example of a data compare, of two databases
residing on different servers. Here, the production database
(12.5.4) is running in parallel alongside a cut-over database
(Sybase 15), until the system is ready to be cut completely
over to Sybase 15. The scope of the compare is a single table.
The results show that five of the rows did not match:

Figure 5

Drilling down, one can see which specific rows did not match,
and bring them into sync by selecting the rows of data to be
carried over, at which point update, insert, and/or delete
statements will be generated, as appropriate:

Figure 6

The technologies described above, available in today’s state-
of-the-art database change management tools, elevate the
game significantly from common homegrown approaches,
such as managing DDL within directory trees, using software
source control to manage database structures, or considering
the database or backup to be the “master copy”.

Equipping oneself with a robust set of tools is an impor-
tant step in developing a modern and effective database
change management solution. Also of great importance is an
unambiguous change process, which considers the various
origination points of change, changes in responsibility for
various object types across the project/database lifecycle,
standards around tool usage and considers the design layer in
addition to the physical implementation. With a clear vision,
and judicious use of process and technology, it is possible to
craft a robust and systematic solution for managing database
change across one’s enterprise, yielding significant benefits
in a very short time. ■
www.embarcadero.com

R I N G I N G T H E C H A N G E S F O R C H A N G E M A N A G E M E N T
D

A
T

A
 M

A
N

A
G

E
M

E
N

T

